
Placenta and hormone levels in the womb may have been key driver in human evolution
Dr Alex Tsompanidis, senior researcher at the Autism Research Centre in the University of Cambridge, and the lead author of this new study, said: “Small variations in the prenatal levels of steroid hormones, like testosterone and oestrogen, can predict the rate of social and cognitive learning in infants and even the likelihood of conditions such as autism. This prompted us to consider their relevance for human evolution.”
One explanation for the evolution of the human brain may be in the way humans adapted to be social. Professor Robin Dunbar, an Evolutionary Biologist at the University of Oxford and joint senior author of this new study said: “We’ve known for a long time that living in larger, more complex social groups is associated with increases in the size of the brain. But we still don’t know what mechanisms may link these behavioural and physical adaptations in humans.”
In this new paper, published today in Evolutionary Anthropology, the researchers now propose that the mechanism may be found in prenatal sex steroid hormones, such as testosterone or oestrogens, and the way these affect the developing brain and behaviour in humans.
Using ‘mini-brains’ – clusters of human neuronal cells that are grown in a petri dish from donors’ stem cells – other scientists have been able to study, for the first time, the effects of these hormones on the human brain. Recent discoveries have shown that testosterone can increase the size of the brain, while oestrogens can improve the connectivity between neurons.
In both humans and other primates such as chimpanzees and gorillas, the placenta can link the mother’s and baby’s endocrine systems to produce these hormones in varying amounts.
Professor Graham Burton, Founding Director of the Loke Centre of Trophoblast Research at the University of Cambridge and coauthor of the new paper, said: “The placenta regulates the duration of the pregnancy and the supply of nutrients to the fetus, both of which are crucial for the development of our species’ characteristically large brains. But the advantage of human placentas over those of other primates has been less clear.”
Two previous studies show that levels of oestrogen during pregnancy are higher in human pregnancies than in other primate species.
Another characteristic of humans as a species is our ability to form and maintain large social groups, larger than other primates and other extinct species, such as Neanderthals. But to be able to do this, humans must have adapted in ways that maintain high levels of fertility, while also reducing competition in large groups for mates and resources.
Prenatal sex steroid hormones, such as testosterone and oestrogen, are also important for regulating the way males and females interact and develop, a process known as sex differentiation. For example, having higher testosterone relative to oestrogen leads to more male-like features in anatomy (e.g., in physical size and strength) and in behaviour (e.g., in competition).
But in humans, while these on-average sex differences exist, they are reduced, compared to our closest primate relatives and relative to other extinct human species (such as the Neanderthals). Instead, anatomical features that are specific to humans appear to be related more to aspects of female rather than male biology, and to the effects of oestrogens (e.g., reduced body hair, and a large ratio between the second and fourth digit).
The researchers propose that the key to explain this may lie again with the placenta, which rapidly turns testosterone to oestrogens, using an enzyme called aromatase. Recent discoveries show that humans have higher levels of aromatase compared to macaques, and that males may have slightly higher levels compared to females.
Bringing all these lines of evidence together, the authors propose that high levels of prenatal sex steroid hormones in the womb, combined with increased placental function, may have made human brains larger and more interconnected. At the same time, a lower ratio of androgens (like testosterone) to oestrogens may have led to reductions in competition between males, while also improving fertility in females, allowing humans to form larger, more cohesive social groups.
Professor Simon Baron-Cohen, Director of the Autism Research Centre at the University of Cambridge and joint senior author on the paper, said: “We have been studying the effects of prenatal sex steroids on neurodevelopment for the past 20 years. This has led to the discovery that prenatal sex steroids are important for neurodiversity in human populations. This new hypothesis takes this further in arguing that these hormones may have also shaped the evolution of the human brain.”
Dr Tsompanidis added: “Our hypothesis puts pregnancy at the heart of our story as a species. The human brain is remarkable and unique, but it does not develop in a vacuum. Adaptations in the placenta and the way it produces sex steroid hormones may have been crucial for our brain’s evolution, and for the emergence of the cognitive and social traits that make us human.”
ReferenceTsompanidis, A et al. The placental steroid hypothesis of human brain evolution. Evolutionary Anthropology; 20 June 2025; DOI: 10.1002/evan.70003
The placenta and the hormones it produces may have played a crucial role in the evolution of the human brain, while also leading to the behavioural traits that have made human societies able to thrive and expand, according to a new hypothesis proposed by researchers from the Universities of Cambridge and Oxford.
Our hypothesis puts pregnancy at the heart of our story as a speciesAlex TsompanidisNadzeya Haroshka (Getty Images)Models of a fetus in the womb and of the brain
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Learning to thrive in diverse African habitats allowed early humans to spread across the world
Today, all non-Africans are known to have descended from a small group of people that ventured into Eurasia around 50,000 years ago. However, fossil evidence shows that there were numerous failed dispersals before this time that left no detectable traces in living people.
In a new study published today in the journal in Nature, scientists say that from around 70,000 years ago, early humans began to exploit different habitat types in Africa in ways not seen before.
At this time, our ancestors started to live in the equatorial forests of West and Central Africa, and in the Sahara and Sahel desert regions of North Africa, where they encountered a range of new environmental conditions.
As they adapted to life in these diverse habitats, early humans gained the flexibility to tackle the range of novel environmental conditions they would encounter during their expansion out of Africa.
This increase in the human niche may have been the result of social adaptations, such as long-distance social networks, which allowed for an increase in cultural exchange. The process would have been self-reinforcing: as people started to inhabit a wider proportion of the African continent, regions previously disconnected would have come into contact, leading to further exchanges and possibly even greater flexibility. The final outcome was that our species became the ultimate generalist, able to tackle a wider range of environments.
Andrea Manica, Professor of Evolutionary Ecology in the University of Cambridge’s Department of Zoology, who co-led the study with Professor Eleanor Scerri from the Max Plank Institute of Bioanthropology in Germany, said: “Around 70,000-50,000 years ago, the easiest route out of Africa would have been more challenging than during previous periods, and yet this expansion was big - and ultimately successful.”
Manica added: “It’s incredibly exciting that we were able to look back in time and pinpoint the changes that enabled our ancestors to successfully migrate out of Africa.”
Dr Emily Hallett of Loyola University Chicago, co-lead author of the study, said: “We assembled a dataset of archaeological sites and environmental information covering the last 120,000 years in Africa. We used methods developed in ecology to understand changes in human environmental niches - the habitats humans can use and thrive in - during this time.”
Dr Michela Leonardi at the University of Cambridge and London’s Natural History Museum, the study’s other lead author, said: “Our results showed that the human niche began to expand significantly from 70,000 years ago, and that this expansion was driven by humans increasing their use of diverse habitat types, from forests to arid deserts.”
Many explanations for the uniquely successful dispersal out of Africa have previously been made, from technological innovations, to immunities granted by interbreeding with Eurasian hominins. But there is no evidence of technological innovation, and previous interbreeding does not appear to have helped the long-term success of previous attempts to spread out of Africa.
“Unlike previous humans dispersing out of Africa, those human groups moving into Eurasia after around 60-50,000 years ago were equipped with a distinctive ecological flexibility as a result of coping with climatically challenging habitats,” said Scerri. “This likely provided a key mechanism for the adaptive success of our species beyond their African homeland.”
Previous human dispersals out of Africa - which were not successful in the long term - seem to have happened during particularly favourable windows of increased rainfall in the Saharo-Arabian desert belt, which created ‘green corridors’ for people to move into Eurasia.
The environmental flexibility developed in Africa from around 70,000 years ago ultimately resulted in modern humans’ unique ability to adapt and thrive in diverse environments, and to cope with varying environmental conditions throughout life.
This research was supported by funding from the Max Planck Society, European Research Council and Leverhulme Trust.
Adapted from a press release by the Max Planck Institute of Geoanthropology, Germany
Reference: Hallett, E. Y. et al: ‘Major expansion in the human niche preceded out of Africa dispersal.’ Nature, June 2025. DOI: 10.1038/s41586-025-09154-0.
Before the ‘Out of Africa’ migration that led our ancestors into Eurasia and beyond, human populations learned to adapt to new and challenging habitats including African forests and deserts, which was key to the long-term success of our species’ dispersal.
It’s incredibly exciting that we were able to look back in time and pinpoint the changes that enabled our ancestors to successfully migrate out of Africa.Andrea ManicaOndrej Pelanek and Martin PelanekAfrican Bush Elephant
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge researchers awarded Advanced Grants from the European Research Council
The successful Cambridge grantees’ work covers a range of research areas, including the development of next-generation semiconductors, new methods to identify dyslexia in young children, how diseases spread between humans and animals, and the early changes that happen in cells before breast cancer develops, with the goal of finding ways to stop the disease before it starts.
The funding, worth €721 million in total, will go to 281 leading researchers across Europe. The Advanced Grant competition is one of the most prestigious and competitive funding schemes in the EU and associated countries, including the UK. It gives senior researchers the opportunity to pursue ambitious, curiosity-driven projects that could lead to major scientific breakthroughs. Advanced Grants may be awarded up to € 2.5 million for a period of five years. The grants are part of the EU’s Horizon Europe programme. The UK agreed a deal to associate to Horizon Europe in September 2023.
This competition attracted 2,534 proposals, which were reviewed by panels of internationally renowned researchers. Over 11% of proposals were selected for funding. Estimates show that the grants will create approximately 2,700 jobs in the teams of new grantees. The new grantees will be based at universities and research centres in 23 EU Member States and associated countries, notably in the UK (56 grants), Germany (35), Italy (25), the Netherlands (24), and France (23).
“Many congratulations to our Cambridge colleagues on these prestigious ERC funding awards,” said Professor Sir John Aston, Cambridge’s Pro-Vice-Chancellor for Research. “This type of long-term funding is invaluable, allowing senior researchers the time and space to develop potential solutions for some of biggest challenges we face. We are so fortunate at Cambridge to have so many world-leading researchers across a range of disciplines, and I look forward to seeing the outcomes of their work.”
The Cambridge recipients of 2025 Advanced Grants are:
Professor Clare Bryant (Department of Veterinary Medicine) for investigating human and avian pattern recognition receptor activation of cell death pathways, and the impact on the host inflammatory response to zoonotic infections.
Professor Sir Richard Friend (Cavendish Laboratory/St John’s College) for bright high-spin molecular semiconductors.
Professor Usha Goswami (Department of Psychology/St John’s College) for a cross-language approach to the early identification of dyslexia and developmental language disorder using speech production measures with children.
Professor Regina Grafe (Faculty of History) for colonial credit and financial diversity in the Global South: Spanish America 1600-1820.
Professor Judy Hirst (MRC Mitochondrial Biology Unit/Corpus Christi College) for the energy-converting mechanism of a modular biomachine: Uniting structure and function to establish the engineering principles of respiratory complex I.
Professor Matthew Juniper (Department of Engineering/Trinity College) for adjoint-accelerated inference and optimisation methods.
Professor Walid Khaled (Department of Pharmacology/Magdalene College) for understanding precancerous changes in breast cancer for the development of therapeutic interceptions.
Professor Adrian Liston (Department of Pathology/St Catharine’s College) for dissecting the code for regulatory T cell entry into the tissues and differentiation into tissue-resident cells.
Professor Róisín Owens (Department of Chemical Engineering and Biotechnology/Newnham College) for conformal organic devices for electronic brain-gut readout and characterisation.
Professor Emma Rawlins (Department of Physiology, Development and Neuroscience/Gurdon Institute) for reprogramming lung epithelial cell lineages for regeneration.
Dr Marta Zlatic (Department of Zoology/Trinity College) for discovering the circuit and molecular basis of inter-strain and inter-species differences in learning
“These ERC grants are our commitment to making Europe the world’s hub for excellent research,” said Ekaterina Zaharieva, European Commissioner for Startups, Research, and Innovation. “By supporting projects that have the potential to redefine whole fields, we are not just investing in science but in the future prosperity and resilience of our continent. In the next competition rounds, scientists moving to Europe will receive even greater support in setting up their labs and research teams here. This is part of our “Choose Europe for Science” initiative, designed to attract and retain the world’s top scientists.”
“Much of this pioneering research will contribute to solving some of the most pressing challenges we face - social, economic and environmental,” said Professor Maria Leptin, President of the European Research Council. “Yet again, many scientists - around 260 - with ground-breaking ideas were rated as excellent, but remained unfunded due to a lack of funds at the ERC. We hope that more funding will be available in the future to support even more creative researchers in pursuing their scientific curiosity.”
Eleven senior researchers at the University of Cambridge have been awarded Advanced Grants from the European Research Council – the highest number of grants awarded to any institution in this latest funding round.
Westend61 via Getty ImagesScientist pipetting samples into eppendorf tube
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Pangolins in West Africa hunted for food rather than for illicit scales trade
Research finds that appetite for bushmeat – rather than the black market for scales to use in traditional Chinese medicine – may be driving West Africa’s illegal hunting of one of the world’s most threatened mammals.
How ‘supergenes’ help fish evolve into new species
Why are there so many different kinds of animals and plants on Earth? One of biology’s big questions is how new species arise and how nature’s incredible diversity came to be.
Cichlid fish from Lake Malawi in East Africa offer a clue. In this single lake, over 800 different species have evolved from a common ancestor in a fraction of the time it took for humans and chimpanzees to evolve from their common ancestor.
What’s even more remarkable is that the diversification of cichlids happened all in the same body of water. Some of these fish became large predators, others adapted to eat algae, sift through sand, or feed on plankton. Each species found its own ecological niche.
Now, researchers from the Universities of Cambridge and Antwerp have determined how this evolution may have happened so quickly. Their results are reported in the journal Science.
The researchers looked at the DNA of over 1,300 cichlids to see if there’s something special about their genes that might explain this rapid evolution. “We discovered that, in some species, large chunks of DNA on five chromosomes are flipped – a type of mutation called a chromosomal inversion,” said senior author Hennes Svardal from the University of Antwerp.
Normally, when animals reproduce, their DNA gets reshuffled in a process called recombination – mixing the genetic material from both parents. But this mixing is blocked within a chromosomal inversion. This means that gene combinations within the inversion are passed down intact without mixing, generation after generation, keeping useful adaptations together and speeding up evolution.
“It’s sort of like a toolbox where all the most useful tools are stuck together, preserving winning genetic combinations that help fish adapt to different environments,” said first author Moritz Blumer from Cambridge’s Department of Genetics.
These preserved sets of genes are sometimes called ‘supergenes. In Malawi cichlids, the supergenes seem to play several important roles. Although cichlid species can still interbreed, the inversions help keep species separate by preventing their genes from blending too much. This is especially useful in parts of the lake where fish live side by side – like in open sandy areas where there’s no physical separation between habitats.
The genes inside these supergenes often control traits that are key for survival and reproduction – such as vision, hearing, and behaviour. For example, fish living deep in the lake (down to 200 meters) need different visual abilities than those near the surface, require different food, and need to survive at higher pressures. Their supergenes help maintain those special adaptations.
“When different cichlid species interbred, entire inversions can be passed between them – bringing along key survival traits, like adaptations to specific environments, speeding up the process of evolution,” said Blumer.
The inversions also frequently act as sex chromosomes, helping determine whether a fish becomes male or female. Since sex chromosomes can influence how new species form, this opens new questions about how evolution works.
“While our study focused on cichlids, chromosomal inversions aren’t unique to them,” said co-senior author Professor Richard Durbin, from Cambridge’s Department of Genetics. “They’re also found in many other animals — including humans — and are increasingly seen as a key factor in evolution and biodiversity.”
“We have been studying the process of speciation for a long time,” said Svardal. “Now, by understanding how these supergenes evolve and spread, we’re getting closer to answering one of science’s big questions: how life on Earth becomes so rich and varied.”
Reference:
L. M. Blumer, V. Burskaia, I. Artiushin, J. Saha et al. ‘Introgression dynamics of sex- linked chromosomal inversions shape the Malawi cichlid radiation.’ Science (2025). DOI: 10.1126/science.adr9961
Researchers have found that chunks of ‘flipped’ DNA can help fish quickly adapt to new habitats and evolve into new species, acting as evolutionary ‘superchargers’.
banusevim via Getty ImagesDolphin cichlid (Cyrtocara moorii)
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge researchers awarded £7.5 million to build programmable plants
Imagine a plant with entirely new abilities – more nutritious food, crops that survive heatwaves, or leaves that grow useful materials. With new ARIA funding Cambridge researchers hope to unlock the technology to fast-track crop development and enhance plants with new qualities, like drought-tolerance to reduce the amount of water they need, or the ability to withstand pests and diseases.
Their research has the potential to revolutionise the future of agriculture and offer a radical new approach to securing food supply in the face of climate change.
Programmable plants – a major leap in plant biology“We’re building the tools to make plants programmable, just like software. This isn’t science fiction – it’s the future of agriculture,” said Professor Jake Harris, Head of the Chromatin and Memory group, and project lead for one of the ARIA-funded projects.
Harris’ team is awarded £6.5 million to build the world’s first artificial plant chromosome.
The ambitious aim of the Synthetic Plants programme is to develop artificial chromosomes and chloroplasts that can survive in a living plant. If the teams achieve this, it will be one the most significant advances in plant synthetic biology.
The international team involves collaborators from The University of Western Australia, biotech company Phytoform Labs and the Australian Genome Foundry at Macquarie University.
“Our idea is that instead of modifying an existing chromosome, we design it from the ground up,” Professor Harris said.
He added: “We’re rethinking what plants can do for us. This synthetic chromosome could one day help grow crops that are more productive, more resilient, and better for the planet.”
While synthetic chromosomes have been achieved in simpler organisms, such as bacteria and yeast, this will be the first attempt to create and deploy one entirely from scratch in a plant.
The project will use the moss Physcomitrium patens – a unique, highly engineerable plant – as a development platform to build and test a bottom-up synthetic chromosome, before transferring it into potato plants.
It also opens new possibilities for growing food and medicines in space, and for indoor agriculture. It could allow scientists to give elite crop varieties disease resistance, or to grow productively in new climates and environments.
Unlocking powerful applications in agricultureThe second funded project, led by Professor Alison Smith and Dr Paweł Mordaka in the Plant Metabolism group, aims to use the synthetic chloroplasts to enable plants to fix nitrogen, and produce vitamin B12. The use of fertilisers to supply nitrogen and promote good crop yields is the greatest cause of pollution from agriculture; reducing the need for these would promote more sustainable food production systems.
This builds on their previous work to design and build the entire chloroplast genome for the simple single-cell alga Chlamydomonas reinhardtii.
The Cambridge researchers are awarded almost £1 million, as part of a £9 million grant to this project. They are working with an international team of researchers from the UK, USA and Germany to transfer this technology to build synthetic chloroplasts in potato plants.
Professor Smith said: “Our success would unlock powerful applications in agriculture, like plants capable of nitrogen fixation or producing essential nutrients like vitamin B12, potentially reducing fertiliser dependence and addressing malnutrition. These traits have tremendous potential should they be engineered into plants.”
She added: “It will enable scientists to surpass what can be accomplished with gene editing and equip plants with new functions, from reducing agricultural water use to protecting crop yields in uncertain conditions.”
A unique opportunityThe ambitiousness of this project is outside the scope of most other UK funding schemes. Professor Harris believes this stems from ARIA’s unique approach to developing the research opportunity and goal along with the research community.
Harris said: “ARIA had a couple of events with synthetic biologists to look at what’s on the edge of possible, what could be useful as a moonshot approach that could really change things.”
He added: “It’s a totally different way of seeing things. We went from ‘here’s what we want to see in the world’ to ‘how are we going to get there?’ It catalysed a different team and a different way of thinking.”
“This work moves us beyond the limitations of natural genomes. It’s about designing entirely new capabilities in plants – from the molecular level up.”
Currently, it typically takes eight years to develop a new crop variety in the UK, but with this new technology it could be a matter of one year or even less. The speed of development would be dramatically increased, much in the way that revolutionary protein-folding technology like AlphaFold has massively accelerated the process of drug discovery.
Synthetic biology is already revolutionising the world of healthcare and could transform agriculture if applied to tailoring plant traits.
Two groups involving researchers from the University of Cambridge’s Department of Plant Sciences are among nine teams to have been awarded funding today from the UK’s Advanced Research + Invention Agency (ARIA)’s Synthetic Plants programme.
We’re building the tools to make plants programmable, just like software. This isn’t science fiction – it’s the future of agriculture.Jake Harrispkujiahe on GettyGloved hand holding plant in pot
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge researchers named as 2025 Academy of Medical Sciences Fellows
The new Fellows have been recognised for their remarkable contributions to advancing medical science, groundbreaking research discoveries and translating developments into benefits for patients and the wider public. Their work exemplifies the Academy’s mission to create an open and progressive research sector that improves health for everyone.
They join an esteemed Fellowship of 1,450 researchers who are at the heart of the Academy’s work, which includes nurturing the next generation of scientists and shaping research and health policy in the UK and worldwide.
One of Cambridge’s new Fellows, Professor Sam Behjati, is a former recipient of the Academy’s prestigious Foulkes Foundation medal, which recognises rising stars within biomedical research. Sam is Clinical Professor of Paediatric Oncology at the University and an Honorary Consultant Paediatric Oncologist at Addenbrooke’s Hospital, as well as Group Leader at the Wellcome Sanger Institute. His research is rooted in cancer genomics, phylogenetics, and single cell transcriptomics and spans a wide range of diseases and biological problems. More recently, his work has focused on the origin of cancers, in particular of childhood cancer. In addition, he explores how to use genomic data to improve the treatment of children. Sam is a Fellow at Corpus Christi College, Cambridge.
Also elected to the Academy of Medical Sciences Fellowship are:
Professor Clare Bryant, Departments of Medicine and Veterinary Medicine
Clare Bryant is Professor of Innate Immunity. She studies innate immune cell signalling during bacterial infection to answer fundamental questions about host-pathogen interactions and to search for new drugs to modify them. She also applies these approaches to study inflammatory signalling in chronic diseases of humans and animals. Clare has extensive collaborations with many pharmaceutical companies, is on the scientific advisory board of several biotech companies, and helped found the natural product company Polypharmakos. Clare is a Fellow of Queens’ College, Cambridge.
Professor Frank Reimann, Institute of Metabolic Science-Metabolic Research Laboratories
Frank Reimann is Professor of Endocrine Signaling. The main focus of his group, run in close partnership with Fiona Gribble, is the enteroendocrine system within the gut, which helps regulate digestion, metabolism, and how full we feel. Their work has included the use of animal models and human cellular models to understand how cells function. One of these cells, glucagon-like peptide-1 (GLP-1) is the target of therapies now widely used in the treatment of diabetes mellitus and obesity. How cells shape feeding behaviour has become a major focus of the lab in recent years.
Professor Mina Ryten, UK Dementia Research Institute
Mina Ryten is a clinical geneticist and neuroscientist, and Director of the UK Dementia Research Institute at Cambridge since January 2024. She also holds the Van Geest Professorship and leads a lab focused on understanding molecular mechanisms driving neurodegeneration. Mina’s research looks at how genetic variation influences neurological diseases, particularly Lewy body disorders. Her work has advanced the use of single cell and long-read RNA sequencing to map disease pathways and identify potential targets for new treatments. Her expertise in clinical care and functional genomics has enabled her to bridge the gap between patient experience and scientific discovery.
Professor Andrew Morris CBE FRSE PMedSci, President of the Academy of Medical Sciences, said: “The breadth of disciplines represented in this year’s cohort – from mental health and infectious disease to cancer biology and respiratory medicine – reflects the rich diversity of medical science today. Their election comes at a crucial time when scientific excellence and collaboration across disciplines are essential for addressing global health challenges both now and in the future. We look forward to working with them to advance biomedical research and create an environment where the best science can flourish for the benefit of people everywhere.”
The new Fellows will be formally admitted to the Academy at a ceremony on Wednesday 9 July 2025.
Four Cambridge biomedical and health researchers are among those announced today as newly-elected Fellows of the Academy of Medical Sciences.
Big T Images for Academy of Medical SciencesAcademy of Medical Sciences plaque
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge awarded silver-gilt medal at RHS Chelsea Flower Show debut
Presented by The Sainsbury Laboratory Cambridge University, the exhibit is part of a brand-new GreenSTEM section that celebrates cutting-edge research and innovation in the world of plant science.
Blooming Numbers takes visitors on an immersive journey through the latest discoveries in quantitative plant biology—starting with the humble flower and diving deep into molecular biology, genetics, imaging technologies, computational modelling, and the often-overlooked mathematical patterns that govern plant development.
“This award is just so exciting,” said Kathy Grube from the Sainsbury Laboratory.
“We came in in the morning to water the plants and turn on the microscopes, and the medal had been laid out by the judges. We were jumping up and down when we found it.”
The eye-catching exhibit was a collaborative effort across multiple Cambridge institutions and partners. The University’s Department of Engineering co-designed the infrastructure, drawing inspiration from the Fibonacci sequence—an iconic numerical pattern found throughout nature. The Pollinator Patch, a lush highlight of the exhibit, was designed and cultivated by Oakington Garden Centre to demonstrate pollinator-friendly planting. Darwin Nurseries added wildlife-friendly hanging baskets that captivated visitors and judges alike.
“One of our fellow exhibitors, who have been coming to Chelsea for years, told us that getting a silver-gilt on your first try is a real achievement,” said Kathy.
“The judges came over and said the design of the stand was fantastic, and they loved the interactive exhibits. We’re just so honoured.”
The RHS Chelsea Flower Show, the world’s most famous horticultural show, runs until the end of the week and attracts horticultural experts, designers, and plant lovers from across the globe.
The University of Cambridge has made a dazzling debut at the RHS Chelsea Flower Show, winning a prestigious silver-gilt medal for its interactive plant science exhibit, Blooming Numbers.
The Sainsbury Laboratory Cambridge University
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge researchers elected as Fellows of the Royal Society 2025
“It is with great pleasure that I welcome the latest cohort of outstanding researchers into the Fellowship of the Royal Society,” said Sir Adrian Smith, President of the Royal Society. “Their achievements represent the very best of scientific endeavour, from basic discovery to research with real-world impact across health, technology and policy. From tackling global health challenges to reimagining what AI can do for humanity, their work is a testament to the power of curiosity-driven research and innovation.
“The strength of the Fellowship lies not only in individual excellence, but in the diversity of backgrounds, perspectives and experiences each new member brings. This cohort represents the truly global nature of modern science and the importance of collaboration in driving scientific breakthroughs.”
The Fellows and Foreign Members join the ranks of Stephen Hawking, Isaac Newton, Charles Darwin, Albert Einstein, Lise Meitner, Subrahmanyan Chandrasekhar and Dorothy Hodgkin.
The new Cambridge fellows are:
Professor Edward Bullmore FMedSci FRS
Professor Ed Bullmore is Professor of Psychiatry and former Head of the Department of Psychiatry. His research mainly involves the application of brain imaging to psychiatry. He has introduced an entirely original approach to the analysis of human brain anatomy, involving graph theory and its application to small-world networks. This has had an enormous impact on the field, especially in relation to understanding the biological basis of schizophrenia and depression. His work has been key to the understanding of the 'wiring' of the human brain.
Professor Gábor Csányi FRS
Professor Gábor Csányi is Professor of Molecular Modelling in the Department of Engineering, and a Fellow of Pembroke College. His work is in the field of computational chemistry, and is focused on developing algorithms to predict the properties of materials and molecules from first principles. He pioneered the application of machine learning to molecular modelling which lead to enormous gains in the efficiency of molecular dynamics simulation.
Professor Judith Driscoll FRS
Professor Judith Driscoll is Professor of Materials Science in the Department of Materials Science and Metallurgy, and a Fellow of Trinity College. Her research is concerned with the nanoscale design and tuning of functional oxide thin film materials for energy-efficient electronic applications. A particular focus of her research group is oxide thin films, owing to their wide range of functionalities and their stability. However, their compositions tend to be complex, defects are prevalent, and interface effects play a strong role. Also, for many applications device structural dimensions are required down to nanometre length-scales. Together, all these factors produce exciting challenges for the materials scientist.
Professor Marie Edmonds FRS
Professor Marie Edmonds is Head of Department and Professor of Volcanology and Petrology in the Department of Earth Sciences. She is also a Fellow of Queens’ College. Her research focuses on understanding the impact of volcanoes on our environment and on the habitability of our planet. Her research spans the boundaries between traditional disciplines, from deciphering the nature of the interior of the Earth, to magma transport and storage in the crust, to volcano monitoring, understanding ore deposits and the dynamic chemistry of volcanic gases in the atmosphere and climate.
Professor Julian Hibberd FRS
Professor Julian Hibberd is Head of the Department of Plant Sciences and a Fellow of Emmanuel College. His research focuses on guiding optimisation of photosynthesis to improve crop yields. The C4 pathway is a complex form of photosynthesis that evolved around 30 million years ago and is now used by the most productive plants on the planet. Professor Hibberd has provided key insights into the evolution of C4 photosynthesis through analysis of plant physiology, cell specialisation, organelle development, and the control of gene expression.
Dr Gregory Jefferis FRS
Dr Gregory Jefferis is Joint Head of the Neurobiology Division at the MRC Laboratory of Molecular Biology and Director of Research of the Department of Zoology. The broad goal of his research is to understand how smell turns into behaviour in the fruit fly brain. His group is particularly interested in how odour information is processed by the higher olfactory centres that mediate innate and learned behaviour.
Professor Jason Miller FRS
Professor Jason Miller is a Professor in the Department of Pure Mathematics and Mathematical Statistics and a Fellow of Trinity College. His research interests are in probability, in particular stochastic interface models, random walk, mixing times for Markov chains, and interacting particle systems.
Professor Andrew Pitts FRS
Professor Andrew Pitts is Emeritus Professor of Theoretical Computer Science in the Department of Computer Science and Technology and an Emeritus Fellow of Darwin College. His research makes use of techniques from category theory, mathematical logic and type theory to advance the foundations of programming language semantics and theorem proving systems. His aim is to develop mathematical models and methods that aid language design and the development of formal logics for specifying and reasoning about programs. He is particularly interested in higher-order typed programming languages and in dependently typed logics.
Dr Marta Zlatic FRS
Dr Marta Zlatic is Programme Leader at the MRC Laboratory of Molecular Biology, and Director of Research in the Department of Zoology. She is also a Fellow of Trinity College. Her research aims to understand the relationship between the structure of the nervous system and its function and to discover the basic principles by which neural circuits implement fundamental computations. A major focus of her research is the circuit implementation of learning and decision-making.
Nine outstanding Cambridge scientists have been elected as Fellows of the Royal Society, the UK’s national academy of sciences and the oldest science academy in continuous existence.
Tom MorrisEntrance to the Royal Society
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
The Cambridge view on memory
What is a memory?
Is it a distinct pattern of brain activity, a blueprint for future behaviour, or a skill that we can improve with a little training? Probably all these things and more, argues Jon Simons, Professor of Cognitive Neuroscience in the Department of Psychology and Head of the School of the Biological Sciences.
Jon’s Memory Lab studies all aspects of memory. They invite volunteers to complete memory tasks online, in the laboratory, or sometimes while lying in an MRI machine while the team scans their brains.
If memory servesThe biochemical changes that represent memories range across the brain’s real estate. A long list of factors determine which brain areas light up during the experience: whether a memory is being encoded or reconstructed, whether it's an old or a new pattern, and what kind of information it deals with.
“We know that the hippocampus is crucial for forming new memories, but it’s not necessarily the permanent storage site," Jon says. "For long-term storage, we also recruit cortical areas – the frontal lobes, temporal lobes, parietal lobes and more.”
To plot a route through tangled terrain, researchers divide memory into different types. Short-term memory lasts a minute at most and has a limited capacity – around 7 items give-or-take, according to Harvard’s George Miller in the 1950s. Think of repeating numbers to yourself while jotting down someone’s phone number. If we don’t record those numbers fast enough, they’ll fade quickly.
But even short-term memory isn’t unitary. Alan Baddeley (Churchill 1959), former director of Cambridge’s Medical Research Council (MRC) Applied Psychology Unit (now called the MRC Cognition and Brain Sciences Unit), coined a new way of understanding how short-term memories are stored and manipulated. His 'working memory' model proposes that separate brain systems deal with different kinds of inputs. One part rehearses and replays sounds, for instance, while another holds visual information like a ‘mental canvas’.
the_working_memory_model.svg_.pngThis is different yet again from our long-term memories. These deeper experiences can stay with us for a lifetime. Recalling them can be thought of as a kind of ‘mental time-travel’, allowing us to subjectively relive past events complete with the sights, smells and sounds of cherished scenes.
Researchers now believe that we reconstruct our memories each time we experience them. From scant traces, we extrapolate the narrative of what happened. In this way, memory is a creative act, not a simple recap. One classic Cambridge study revealed how our memories are morphed by bias, beliefs, feelings and expectations.
Enter the elegant study of Sir Frederic Bartlett, Cambridge’s first Psychology professor.
Bartlett’s book ‘Remembering’ (1932) made use of a now famous story: the war of the ghosts.
In this Native American folk tale, a man meets warriors paddling their canoes downriver, who invite him to join a war party. He later realises the men are ghosts, waging war on the living.
Bartlett taught his Edwardian undergraduates this tale, then asked them to retell it in their own words. Over several retellings, his students altered key elements of the story so that it sounded more like the world they knew. ‘Canoes’ became ‘boats’, while mentions of ‘spirits’ were dropped altogether.
canoe.jpg
Bartlett's study showed the effects of culture on recall, and how the changes we make to our memories aren’t random. Even if we’re not conscious of doing so, we prefer to change story elements so that they align with our expectations, biases and cultural norms.
This feature of memory has massive implications for how we remember the past. Eye-witness testimony will be prey to the same biases. Unintentional errors, made in favour of what is familiar to us, are very difficult to avoid.
Another titan of memory research was an undergraduate while Bartlett was teaching. During World War II, Brenda Milner (Newnham 1936) helped the Psychology department repurpose itself for the war effort. After this, Milner moved to Canada to analyse patient Henry Molaison (formerly known as H M). Molaison would become one of the most famous patients in all of psychology.
Molaison had profound amnesia. This was due to experimental surgery, where doctors removed his hippocampus to try and improve his epilepsy. Milner meticulously documented how Molaison’s memory functioned after surgery. She showed how he was unable to form new memories or remember events from the years leading up to his surgery, but that his memories from earlier in life remained intact. This work transformed our understanding of the hippocampus’ role in memory.
Psychologists like Milner and Bartlett showed us the primacy of the hippocampus and highlighted the creative nature of memory. Modern Cambridge researchers can take our investigations even further.
With all we now know about memory, can we understand what makes for better performance?
Together with Professor Simon Baron-Cohen and his team at the Autism Research Centre, Jon is currently studying thousands of the UK’s best memorisers to find the keys to their prowess. Volunteers completed a battery of memory tests online – the best performers then came for brain scans and further testing in the lab.
Their early results suggest some interesting traits, as well as the strategies people use to enhance their abilities.
“There's a psychological trait called ‘systemising’,” says Jon. “It's found in people who have a drive to analyse and construct rule-based ways of thinking. Those kinds of people seem to be more likely to have exceptional memories.”
Simon Baron-Cohen was the first to define this trait. He did so in relation to people on the autism spectrum, for whom ‘systemising’ is set very high.
So if you happen to think like a ‘systemiser’, you may have a better memory. If you don’t, there are also concrete strategies to boost your memory capacities.
“Mnemonics are an evidence-based technique that can improve our memories,” Jon explains. “They often involve thinking spatially. Start by visualising somewhere you know well, then mentally ‘place’ important information in that map. You can then 'travel through' that map when recalling.”
Think Sherlock’s ‘mind palace’ from the BBC adaptation of Arthur Conan Doyle’s books. Jon points out that pre-BBC, this strategy was familiar to ancient Greek and Roman orators. They called it the method of loci, using it as a way to remember extremely long speeches. It can also be helpful for everyday tasks, like remembering a shopping list.
gettyimages-1270935214.jpg
Jon’s tip for this method is to make the memory triggers striking. Associate the eggs on your shopping list with a fire-breathing dragon guarding its young, for example, and the sensory impression might be distinct enough to stand out from the background noise.
“The more bizarre the better! Our memories have a big job in trying to differentiate one memory from another. We can help it out by making key information more distinctive. This helps our brains to distinguish memories from one another, and stop irrelevant ones from overlapping or interfering.”
Indeed, one of the functions of the hippocampus is to perform pattern separation – trying to make our memories distinct. If memories are too similar, we find it harder to recall specific experiences.
This might go some way to explaining the ‘brain fog’ many experienced during COVID-19 lockdowns. With days inside tending to repeat familiar routines, we had less distinct and varied experiences. Our brains were less able to create rich, meaningful memories. Looking back on 2020 and 2021, people find it hard to separate what happened when.
There’s a lesson for non-lockdown living here too. If we want a rich life that feels like it lasts longer and is full of accessible, interesting memories, we should prioritise variety in our experience.
To further improve memory function, we should strive to decrease stress, fear and anxiety (where possible). These emotional states increase our cognitive load and reduce our memory abilities.
“When anxious thoughts flood our minds, they compete for space in our working memory and impair our ability to recall long-term memories. They pull attention and resources away from the things we’d like to focus on. If we can find ways to reduce stress and anxiety, our memory can often bounce back.”
While this might be easier said than done, science has concrete recommendations for reducing stress and anxiety. Done consistently, a healthy diet, regular exercise and a good sleep schedule, as well as techniques like mindfulness practice, can have transformative effects.
Researchers like Jon are deepening our understanding of what memories are. The Memory Lab follows an illustrious line of Cambridge psychologists who identified key pieces of memory’s endless puzzle. Wherever the next steps lead, they will affirm a wonder of nature: the intricate patterns our mind weaves to make sense of the world outside.
For a handy guide to building mental resilience, check out Brain Boost by Dr Barbara Sahakian and Dr Christelle Langley. To focus on fighting anxiety with scientific techniques, try Dr Olivia Remes.
To find out how you can participate in Memory Lab studies, get in touch.By tying together more than a century of memory research at Cambridge, the Memory Lab gives us tangible ways to improve, preserve and understand our memory.
When anxious thoughts flood our minds, they compete for space in our working memory and impair our ability to recall long-term memories. If we can find ways to reduce stress and anxiety, our memory can often bounce back.Jon SimonsSusana CamachoJon Simons, by Susana Camacho
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
It takes parents a year to ‘tune in’ to their child’s feelings about starting school
Findings from a major Cambridge-led study inspired psychologists to co-produce a picture book that helps parents develop a deeper understanding of how their child is coping with the first year of school.
Growing wildflowers on disused urban land can damage bee health
The metals have previously been shown to damage the health of pollinators, which ingest them in nectar as they feed, leading to reduced population sizes and death. Even low nectar metal levels can have long-term effects, by affecting bees’ learning and memory - which impacts their foraging ability.
Researchers have found that common plants including white clover and bindweed, which are vital forage for pollinators in cities, can accumulate arsenic, cadmium, chromium and lead from contaminated soils.
Metal contamination is an issue in the soils of cities worldwide, with the level of contamination usually increasing with the age of a city. The metals come from a huge range of sources including cement dust and mining.
The researchers say soils in cities should be tested for metals before sowing wildflowers and if necessary, polluted areas should be cleaned up before new wildflower habitats are established.
The study highlights the importance of growing the right species of wildflowers to suit the soil conditions.
Reducing the risk of metal exposure is critical for the success of urban pollinator conservation schemes. The researchers say it is important to manage wildflower species that self-seed on contaminated urban land, for example by frequent mowing to limit flowering - which reduces the transfer of metals from the soil to the bees.
The results are published today in the journal Ecology and Evolution.
Dr Sarah Scott in the University of Cambridge’s Department of Zoology and first author of the report, said: “It’s really important to have wildflowers as a food source for the bees, and our results should not discourage people from planting wildflowers in towns and cities.
“We hope this study will raise awareness that soil health is also important for bee health. Before planting wildflowers in urban areas to attract bees and other pollinators, it’s important to consider the history of the land and what might be in the soil – and if necessary find out whether there’s a local soil testing and cleanup service available first.”
The study was carried out in the post-industrial US city of Cleveland, Ohio, which has over 33,700 vacant lots left as people have moved away from the area. In the past, iron and steel production, oil refining and car manufacturing went on there. But any land that was previously the site of human activity may be contaminated with traces of metals.
To get their results, the researchers extracted nectar from a range of self-seeded flowering plants that commonly attract pollinating insects, found growing on disused land across the city. They tested this for the presence of arsenic, cadmium, chromium and lead. Lead was consistently found at the highest concentrations, reflecting the state of the soils in the city.
The researchers found that different species of plant accumulate different amounts, and types, of the metals. Overall, the bright blue-flowered chicory plant (Cichorium intybus) accumulated the largest total metal concentration, followed by white clover (Trifolium repens), wild carrot (Daucus carota) and bindweed (Convolvulus arvensis). These plants are all vital forage for pollinators in cities - including cities in the UK - providing a consistent supply of nectar across locations and seasons.
There is growing evidence that wild pollinator populations have dropped by over 50% in the last 50 years, caused primarily by changes in land use and management across the globe. Climate change and pesticide use also play a role; overall the primary cause of decline is the loss of flower-rich habitat.
Pollinators play a vital role in food production: many plants, including apple and tomato, require pollination in order to develop fruit. Natural ‘pollination services’ are estimated to add billions of dollars to global crop productivity.
Scott said: “Climate change feels so overwhelming, but simply planting flowers in certain areas can help towards conserving pollinators, which is a realistic way for people to make a positive impact on the environment.”
The research was funded primarily by the USDA National Institute of Food and Agriculture.
Reference
Scott, S.B.& Gardiner, M.M.: ‘Trace metals in nectar of important urban pollinator forage plants: A direct exposure risk to pollinators and nectar-feeding animals in cities.’ Ecology and Evolution, April 2025. DOI: 10.1002/ece3.71238
Wildflowers growing on land previously used for buildings and factories can accumulate lead, arsenic and other metal contaminants from the soil, which are consumed by pollinators as they feed, a new study has found.
Our results should not discourage people from planting wildflowers in towns and cities. But.. it’s important to consider the history of the land and what might be in the soil."Sarah ScottSarah ScottChicory growing in a vacant lot
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge researchers named 2025 Schmidt Science Fellows
Now in its eighth year, the Fellowship provides financial support for a postdoctoral placement of one to two years at a world-class research institution.
The funding equips scientists to apply their knowledge to a new field of study with the goal of accelerating discoveries, and to develop their leadership potential.
Dr Poppy Oldroyd, a 2025 Schmidt Science Fellow from the Department of Engineering, plans to pioneer a new frontier in understanding brain communication through optical measurements, ultimately advancing treatments for memory-related diseases.
The human brain communicates through intricate networks of neurons, crucial for learning and memory. However, how these neural conversations translate into memory formation remains a mystery in neuroscience. Oldroyd’s research aims to use light-based tools, like advanced optogenetics, to explore these pathways in detail. By uncovering how specific brain circuits contribute to learning and memory, this research could revolutionise our understanding of these essential brain functions.
Ultimately, this knowledge may enhance our comprehension of memory-related disorders like Alzheimer’s disease and epilepsy.
Dr Matthew McLouglin, a 2025 Schmidt Science Fellow from the Cambridge Stem Cell Institute, plans to develop tools to study how our cells age in real time. This will help us understand why we age and how we might promote healthy aging to improve quality of life in the elderly.
Our DNA is organised into structures called chromosomes. Each chromosome has a protective cap, the ‘telomere’, which is partially lost with each cell division. In old age, cells cannot function properly due to the loss of telomeres, increasing the risk of age-related diseases such as cancer and dementia. McLoughlin will use cutting-edge imaging technology to track the loss of telomeres over time, understanding how telomeres are lost and why this stops cells from functioning.
Oldroyd and McLoughlin join a community of 209 Schmidt Science Fellows from nearly 40 countries who are leaders in interdisciplinary science.
“Philanthropic funding of scientific research, and especially support of early-career researchers, has never been more important,” said Wendy Schmidt, who co-founded Schmidt Science Fellows with her husband, Eric.
“By providing Schmidt Science Fellows with support, community, and freedom to work across disciplines and gain new insights, we hope they’ll tackle some of the world’s most vexing challenges, achieve breakthroughs and help create a healthier, more resilient world for all.”
Established in 2017, Schmidt Science Fellows is a programme of Schmidt Sciences delivered in partnership with the Rhodes Trust.
The 2025 Fellows represent 15 nationalities, including researchers from Jordan and the United Arab Emirates for the first time in the programme’s history.
This year’s cohort will work on a range of problems from cancer treatment to quantum technologies to sustainability.
Alongside their research Placement, Fellows participate in a 12-month interdisciplinary Science Leadership Programme.
Each year, Schmidt Science Fellows works in partnership with more than 100 universities to identify candidates for the Fellowship.
Nominees are selected via an application process that includes an academic review with panels of experts in their original disciplines and final interviews with a multidisciplinary panel of scientists and private sector leaders.
“The Schmidt Science Fellows Program is cultivating a dynamic global community of remarkable scientists and champions of interdisciplinary research,” said Stu Feldman, Chief Scientist at Schmidt Sciences.
“Their work exemplifies Schmidt Sciences’ commitment to support pioneering approaches that will drive the next era of discovery and innovation.”
The 2025 Schmidt Science Fellows represent 27 nominating universities, including, for the first time, McGill University in Canada, RWTH Aachen University in Germany, Tecnológico de Monterrey in Mexico, University of California, Los Angeles in the US, and University of Groningen in the Netherlands.
Two University of Cambridge researchers are among the thirty-two early career researchers, tackling issues from improving food security to developing better medical implants, who have been announced as the 2025 Schmidt Science Fellows.
Schmidt Science FellowsPoppy Oldroyd (left) and Matthew McLoughlin (right)
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
AI can be good for our health and wellbeing
Cambridge researchers are looking at ways that AI can transform everything from drug discovery to Alzheimer's diagnoses to GP consultations.
Students from across the country get a taste of studying at Cambridge at the Cambridge Festival
We were delighted to welcome pupils from Warrington’s Lymm High School, Ipswich High School, The Charter School in North Dulwich, Rickmansworth School, Sutton Valance School in Maidstone as well as schools closer to home such as St Peter’s Huntingdon, Fenstanton Primary School, Barton Primary School, Impington Village College and St Andrews School in Soham.
Running over two days (25/26 March 2025) and held in the Cambridge Sports Centre, students went on a great alien hunt with Dr Matt Bothwell from the Institute of Astronomy, stepped back in time to explore Must Farm with Department of Archaeology and the Cambridge Archaeological Unit as well as learning to disagree well with Dr Elizabeth Phillips from The Woolf Institute.
Schools had a choice of workshops from a range of departments including, how to think like an engineer and making sustainable food with biotechnology with researchers from the Department of Chemical Engineering and Biotechnology, as well as the chance to get hands-on experience in the world of materials science and explore how properties of materials can be influenced by temperature at the Department of Materials Science and Metallurgy.
The Department of Veterinary Medicine offered students the opportunity to find out what a career in veterinary medicine may look like with workshops on animal x-rays, how different professionals work together to treat animals in a veterinary hospital as well as meeting the departments horses and cows and learn how veterinarians diagnose and treat these large animals.
Students also had the opportunity to learn about antibodies and our immune system with the MRC Toxicology Unit. The students learnt about the incredible job antibodies do defending our bodies against harmful invaders like bacteria and viruses.
Alongside this, a maths trail, developed by Cambridgeshire County Council, guided students around the West Cambridge site whilst testing their maths skills with a number of problems to solve.
Now in their third year, the Cambridge Festival schools days are offering students the opportunity to experience studying at Cambridge with a series of curriculum linked talks and hands on workshops.
The Cambridge Festival runs from 19 March – 4 April and is a mixture of online, on-demand and in-person events covering all aspects of the world-leading research happening at Cambridge. The public have the chance to meet some of the researchers and thought-leaders working in some of the pioneering fields that will impact us all.
Over 500 KS2 and KS3 students from as far away as Warrington got the chance to experience studying at the University of Cambridge with a selection of lectures and workshops held as part of the Cambridge Festival.
Students make antibody keychains during a workshop with the MRC Toxicology Unit
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Conservation efforts are bringing species back from the brink, even as overall biodiversity falls
A major review of over 67,000 animal species has found that while the natural world continues to face a biodiversity crisis, targeted conservation efforts are helping bring many species back from the brink of extinction.
Genetic study reveals hidden chapter in human evolution
Using advanced analysis based on full genome sequences, researchers from the University of Cambridge have found evidence that modern humans are the result of a genetic mixing event between two ancient populations that diverged around 1.5 million years ago. About 300,000 years ago, these groups came back together, with one group contributing 80% of the genetic makeup of modern humans and the other contributing 20%.
For the last two decades, the prevailing view in human evolutionary genetics has been that Homo sapiens first appeared in Africa around 200,000 to 300,000 years ago, and descended from a single lineage. However, these latest results, reported in the journal Nature Genetics, suggest a more complex story.
“The question of where we come from is one that has fascinated humans for centuries,” said first author Dr Trevor Cousins from Cambridge’s Department of Genetics. “For a long time, it’s been assumed that we evolved from a single continuous ancestral lineage, but the exact details of our origins are uncertain.”
“Our research shows clear signs that our evolutionary origins are more complex, involving different groups that developed separately for more than a million years, then came back to form the modern human species,” said co-author Professor Richard Durbin, also from the Department of Genetics.
While earlier research has already shown that Neanderthals and Denisovans – two now-extinct human relatives – interbred with Homo sapiens around 50,000 years ago, this new research suggests that long before those interactions – around 300,000 years ago – a much more substantial genetic mixing took place. Unlike Neanderthal DNA, which makes up roughly 2% of the genome of non-African modern humans, this ancient mixing event contributed as much as 10 times that amount and is found in all modern humans.
The team’s method relied on analysing modern human DNA, rather than extracting genetic material from ancient bones, and enabled them to infer the presence of ancestral populations that may have otherwise left no physical trace. The data used in the study is from the 1000 Genomes Project, a global initiative that sequenced DNA from populations across Africa, Asia, Europe, and the Americas.
The team developed a computational algorithm called cobraa that models how ancient human populations split apart and later merged back together. They tested the algorithm using simulated data and applied it to real human genetic data from the 1000 Genomes Project.
While the researchers were able to identify these two ancestral populations, they also identified some striking changes that happened after the two populations initially broke apart.
“Immediately after the two ancestral populations split, we see a severe bottleneck in one of them—suggesting it shrank to a very small size before slowly growing over a period of one million years,” said co-author Professor Aylwyn Scally, also from the Department of Genetics. “This population would later contribute about 80% of the genetic material of modern humans, and also seems to have been the ancestral population from which Neanderthals and Denisovans diverged.”
The study also found that genes inherited from the second population were often located away from regions of the genome linked to gene functions, suggesting that they may have been less compatible with the majority genetic background. This hints at a process known as purifying selection, where natural selection removes harmful mutations over time.
“However, some of the genes from the population which contributed a minority of our genetic material, particularly those related to brain function and neural processing, may have played a crucial role in human evolution,” said Cousins.
Beyond human ancestry, the researchers say their method could help to transform how scientists study the evolution of other species. In addition to their analysis of human evolutionary history, they applied the cobraa model to genetic data from bats, dolphins, chimpanzees, and gorillas, finding evidence of ancestral population structure in some but not all of these.
“What’s becoming clear is that the idea of species evolving in clean, distinct lineages is too simplistic,” said Cousins. “Interbreeding and genetic exchange have likely played a major role in the emergence of new species repeatedly across the animal kingdom.”
So who were our mysterious human ancestors? Fossil evidence suggests that species such as Homo erectus and Homo heidelbergensis lived both in Africa and other regions during this period, making them potential candidates for these ancestral populations, although more research (and perhaps more evidence) will be needed to identify which genetic ancestors corresponded to which fossil group.
Looking ahead, the team hopes to refine their model to account for more gradual genetic exchanges between populations, rather than sharp splits and reunions. They also plan to explore how their findings relate to other discoveries in anthropology, such as fossil evidence from Africa that suggests early humans may have been far more diverse than previously thought.
“The fact that we can reconstruct events from hundreds of thousands or millions of years ago just by looking at DNA today is astonishing,” said Scally. “And it tells us that our history is far richer and more complex than we imagined.”
The research was supported by Wellcome. Aylwyn Scally is a Fellow of Darwin College, Cambridge. Trevor Cousins is a member of Darwin College, Cambridge.
Reference:
Trevor Cousins, Aylwyn Scally & Richard Durbin. ‘A structured coalescent model reveals deep ancestral structure shared by all modern humans.’ Nature Genetics (2025). DOI: 10.1038/s41588-025-02117-1
Modern humans descended from not one, but at least two ancestral populations that drifted apart and later reconnected, long before modern humans spread across the globe.
Our history is far richer and more complex than we imaginedAylwyn ScallyJose A. Bernat Bacete via Getty ImagesPlaster reconstructions of the skulls of human ancestors
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.